
Cloud computing

Martial Luyts

Catholic University of Leuven, Belgium

martial.luyts@kuleuven.be

Contents

0. Introduction & outline of this class 1

0.1. Introduction . 2

0.2. Outline of the class . 4

1. Cloud computing overview . 6

1.1. What is Cloud Computing? . 7

1.2. Benefits of Cloud computing for Data Science 15

1.3. Use Cases in Data Science? . 16

2. Cloud Service Providers, Platforms & Services 17

i

2.1. Cloud Service Providers . 18

2.2. Cloud Service models . 33

2.3. Cloud Services . 49

3. Amazon Web Services . 60

3.1. Amazon Web Services Free Tier . 61

3.2. Create an AWS account . 66

3.3. Security setup (IAM) . 68

3.4. Setting up billing alarms . 80

3.5. Accessibility of AWS Free Tier . 87

4. End-to-end data science project with AWS 101

4.1. Objective of the project . 102

4.2. Create an S3 bucket . 103

c© Martial Luyts – MDA course ii

4.3. Upload the Titanic Dataset . 106

4.4. Set Up SageMaker Notebook (JupyterLab) . 108

4.4. Train model in Notebook . 112

4.5. Save and upload the model . 115

4.6. Deploy model . 118

c© Martial Luyts – MDA course iii

Part 0:

Introduction & outline of this class

c© Martial Luyts – MDA course 1

0.1 Introduction

• Imagine you are a data scientist working on a large machine learning model.

• You set it up (locally or containerized), and train it.

• Problem: Computation time!

c© Martial Luyts – MDA course 2

• Solution: Use cloud computing services for speeding up your work.

Example:

• Training a large model on Amazon Web Services (AWS), i.e., a
cloud service provider, can reduce time from 10 hours to only 30 minutes

c© Martial Luyts – MDA course 3

0.2 Outline of the class

• This presentation is specifically designed for data science practitioners, who want
to learn more about the basic building blocks of cloud computing, i.e., one of the
key building blocks of MLOps

• Prior knowledge of Python is required.

• By the end of this class, we will:

• Explore what cloud computing is

• Compare major cloud platforms

c© Martial Luyts – MDA course 4

• Discuss different cloud service models

• Explore different types of cloud services for data science

• Step-by-step AWS account setup and management

• A walkthrough of setting up a data science project on AWS

c© Martial Luyts – MDA course 5

Part 1:

Cloud computing overview

c© Martial Luyts – MDA course 6

1.1 What is Cloud Computing?

• On-demand access to computing resources via the internet

• It delivers IT resources s.a. compute, storage, databases, analytics, and more

• Cloud computing is foundational to modern data science

c© Martial Luyts – MDA course 7

• Examples:

• Google Drive (Cloud storage)

c© Martial Luyts – MDA course 8

• Netflix (Cloud-hosted content delivery)

• Question: But how did it started?

c© Martial Luyts – MDA course 9

• Answer:

• In the beginning (1980s and 1990s), many companies relied on an
on-premises data center, i.e., a group of servers that were privately owned
and controlled by them.

• The management and maintenance of these servers was handled by the firm
itself.

c© Martial Luyts – MDA course 10

• Companies used client-server computing, meaning that their apps were
deployed on servers (their on-premise data center) in the same building as the
users

• Drawback: You had to physically attend the site to access the server

c© Martial Luyts – MDA course 11

• Due to the rise of internet, the switch was made in 1990s and 2000s to
internet and web-based hosting, i.e., elimination of the need for
proximity to the servers, but still own maintenance.

• The access of computing resources and applications could be done over the
internet, using browsers and standard protocols.

c© Martial Luyts – MDA course 12

• In 2000s and 2010s, the area of virtualization and cloud computing
was introduced.

• Data centers were build by big companies like Amazon, Microsoft and
Google.

• Other companies can access these with virtualization technology and
cloud computing platforms to seperate their IT infrastructure from the
underlying hardware and deploy it on these shared, scalable, and
pay-per-use resources

c© Martial Luyts – MDA course 13

• Advantage: Focus on their core business instead of IT management.

c© Martial Luyts – MDA course 14

1.2 Bene�ts of cloud computing

Several benefits of cloud computing include:

• Scalability: Increase computation power when needed

• Flexibility: Run notebooks, models, pipelines from anywhere

• Cost efficiency: Pay for what you use

c© Martial Luyts – MDA course 15

1.3 Use Cases in Data Science

• Storing and querying large datasets (e.g., S3, BigQuery)

• Machine learning training at scale (e.g., SageMaker, Vertex AI)

• Data engineering and ETL pipelines (e.g., AWS Glue, Dataflow)

• Model deployment and monitoring

• Real-time analytics (e.g., Kinesis, Pub/Sub)

c© Martial Luyts – MDA course 16

Part 2:

Cloud Service Providers, Platforms & Services

c© Martial Luyts – MDA course 17

2.1 Cloud Service Providers

• Cloud services providers offer on-demand computing resources s.a. servers,
storage, databases, and AI tools, over the internet

• They help individuals, teams, and companies build, run, and scale applications
without owning physical hardware

• Providers differ in what they specialize in:

• Some offer broad infrastructure (IaaS; see Section 2.2)

• Others focus on developer tools (PaaS; see Section 2.2)

• Or deliver ready-to-use software (SaaS; see Section 2.2)

c© Martial Luyts – MDA course 18

• Choosing the right provider depends on your needs and comfort, such as:

• Budget

• Data science workflow

• Integration with existing tools

• Performance and scalability

• In what follows, we will discuss some main providers, and what makes them
different

c© Martial Luyts – MDA course 19

1. Amazon Web Services (AWS)

• Largest cloud provider

• Launched in 2006 by Amazon

• Amazon’s flagship cloud computing service, generating over 80 billion dollar in
revenue in 2022

c© Martial Luyts – MDA course 20

• Excellent support for AI and ML

• Broadest range of services (200+)

• Popular services: Elastic Compute Cloud (EC2), Simple Storage Service (S3),
Lambda, SageMaker

c© Martial Luyts – MDA course 21

2. Microsoft Azure

• Launched in 2010 by Microsoft

• Seamless integration with Microsoft tools (Windows, Office 365, ...)

• Shines in hybrid cloud setups, i.e., combining on-premise data centers with
cloud environments

c© Martial Luyts – MDA course 22

• Data science friendly (supports Jupyter notebooks, containers, Kubernetes, etc.)

• Trusted by governments and highly regulated industries, due to its
enterprise-grade security and compliance

• Popular services: Azure Virtual Machines, Azure Functions, Azure Machine
Learning

c© Martial Luyts – MDA course 23

3. Google Cloud Platform (GCP)

• Launched in 2011 by Google

• Best in-class for AI, data analytics, and Kubernetes

c© Martial Luyts – MDA course 24

• Simple, developer friendly user experience

• Build on Google’s global infrastructure, which is highly secure and reliable.

• Popular services: Compute Engine, Cloud Storage, Cloud Functions, Vertex AI

c© Martial Luyts – MDA course 25

Overview of the most popular services between them:

c© Martial Luyts – MDA course 26

4. Other notable providers

While AWS, Microsoft Azure and GCP are the most used and known cloud service
providers, there are also other notable providers:

• IBM cloud:

• Strong in AI and hybrid cloud

• Focused on regulated industries

• Oracle cloud:

• Optimized for databases and Oracle-based enterprise software

c© Martial Luyts – MDA course 27

• Alibaba cloud:

• Leader in China and Asia

• Strong presence in e-commerce and global markets

• DigitalOcean:

• Developer-friendly, simple and cost-effective

• Ideal for small teams and startups

• Heroku:

• Simple platform-as-a-service (PaaS; see later)

• Quick deployments, great for prototypes

c© Martial Luyts – MDA course 28

One of the primary characteristics of cloud service provider is the ability to
provision virtualized infrastructure resources using a self-service management
tool.

Example: AWS offers such tools in the form of its

•Management Console (accessible via a web browser)

• Command-line interface (CLI)

• Software Development Kit (SDK)

c© Martial Luyts – MDA course 29

c© Martial Luyts – MDA course 30

c© Martial Luyts – MDA course 31

c© Martial Luyts – MDA course 32

2.2 Cloud Service models

Cloud providers deliver their services in different ways by means of cloud service
models, which defines the level of control and responsibility users have for each
service.

These include:

• Infrastructure as a Service (IaaS)

• Platform as a Service (PaaS)

• Software as a Service (SaaS)

• Function as a Service (FaaS)

• Container as a Service (CaaS)

In what follows, we will discuss them in detail!

c© Martial Luyts – MDA course 33

1. Infrastructure as a Service (IaaS)

• Provides virtualized computing resources over the internet

• User manages operation system, runtime, applications

• Services: Amazon EC2, Google Compute Engine, Azure Virtual Machines

c© Martial Luyts – MDA course 34

• Example:
You are a data scientist and want to train a ML model on a huge dataset. Your
laptop is too slow or doesn’t have enough memory.

With IaaS, you can:

• Rent a powerful virtual machine on AWS (e.g., with GPUs and lots of
RAM)

• Install your tools (e.g., Python, Jupyter and scikit-learn)

• Upload your data and train your model

• Shut it down when you are done!

In other words, you didn’t buy any hardware, but just borrowed it for a few
hours.

c© Martial Luyts – MDA course 35

• Advantages:

• Full control over the environment

• Flexibility to install any software

• Disadvantages:

• More management overhead (patching, security)

c© Martial Luyts – MDA course 36

2. Platform as a Service (PaaS)

• Provides a managed environment for application development and
deployment

• User focuses on code and logic

• With PaaS, the cloud provider gives you not just the infrastructure (like with
IaaS; e.g., the raw kitchen equipment), but also the tools and setup (ingredients
and tools) to build and run your app (recipe) easily, so you don’t need to worry
about installing software, setting up servers, or managing updates (cooking your
recipe from scratch)

• Services: AWS Elastic Beanstalk, Google App Engine, Azure App Services

c© Martial Luyts – MDA course 37

• Example:
You want to build a web app that shows the predictions of your ML model.

With PaaS, you can:

• Use a service like Google App Engine

• Upload your code and model

• The platform takes care of:

• Running your app

• Scaling it when many people use it

• Keeping everything updated and secure

So instead of managing servers, you focus only on writing your app and using
your model!

c© Martial Luyts – MDA course 38

• Advantages:

• Fast deployment

• No infrastructure management

• Disadvantages:

• Limited flexibility compared to IaaS

c© Martial Luyts – MDA course 39

3. Software as a Service (SaaS)

• Fully managed software products accessed via the internet

• It’s like going to a restaurant. The food (software) is ready, you just order and
enjoy, meaning no cooking, no dishes, and no cleanup.

• Services: Google Workspace, Tableau Online, Salesforce

c© Martial Luyts – MDA course 40

• Example:
You want a dataset and train a model, but don’t want to write code or install
anything.

With SaaS, you can:

• Use Google Colab, DataRobot, or BigML

• Upload your dataset

• Use point-and-click tools or simple notebooks

• Get your results and download your model or graphs.

You didn’t write server code, set up Python, or manage any infrastructure. The
software handled everything!

c© Martial Luyts – MDA course 41

• Advantages:

• No setup or maintenance

• Accessible from anywhere

• Disadvantages:

• Minimal customization

c© Martial Luyts – MDA course 42

4. Function as a Service (FaaS)

• Event-driven compute model

• Code runs in response to events without server provisioning

• It’s like a light switch with motion detection. The light (your function) turns on
only when someone walks in. When no one’s there, it is completely off, saving
energy (and money).

• Services: AWS Lambda, Google Cloud Functions, Azure Functions

c© Martial Luyts – MDA course 43

• Example:
You have a trained ML model, and want to use it to make predictions when
someone uploads new data.

With FaaS, you can:

• Write a small function like predict(input data)

• Deploy it using AWS Lambda or Google Cloud functions

• Whenever someone sends new data, the cloud runs the function and returns
the prediction

• When there is no request, nothing is running, and you pay nothing

You don’t set up or manage any server, just the function!

c© Martial Luyts – MDA course 44

• Advantages:

• Cost-efficient for intermittent workloads

• Highly scalable automatically

• Disadvantages:

• Cold start issues

• Limited runtime duration

c© Martial Luyts – MDA course 45

5. Container as a Service (CaaS)

• Focused on containerized applications

• Combines benefits of IaaS and PaaS

• You package your code, dependencies, and environment into a container, and a
cloud service runs and manages those containers for you.

• Services: AWS Elastic Container Service (ECS), Google Kubernetes Engine
(GKE), Azure Kubernetes Service (AKS)

c© Martial Luyts – MDA course 46

• Example:
You have built a data science model that depends on specific Python libraries
and a certain version of pandas and scikit-learn.

With CaaS, you can:

• Put your code, model and environment into a Docker container

• Deploy it using a CaaS platform like AWS Fargate, Google Cloud Run,
or Azure Container Instances

• The platform runs your container whenever needed. Scalable and without
managing servers.

You control exactly what’s inside the container, but the cloud handles the
running and scaling it!

c© Martial Luyts – MDA course 47

• Advantages:

• Flexible, portable, scalable applications

• Easy migration between platforms

• Disadvantages:

• Requires container orchestration knowledge

c© Martial Luyts – MDA course 48

2.3 Cloud Services

Within a cloud service model, Cloud providers often offer a range of cloud services
where the user can use from.

These can be grouped into different categories, depending on its specific function:

• Compute services

• Storage services

• Databases services

c© Martial Luyts – MDA course 49

• AI/Machine Learning (ML) services

• Analytics/Big Data services

• DevOps/Continuous Integration (CI)-Continuous
Delivery/Deployment (CD)

• Networking and Security services

In what follows, we will now discuss the most known services, for the top 3 cloud
providers, i.e., AWS, Microsoft Azure and GCP!

c© Martial Luyts – MDA course 50

1. Compute services

Compute services provide the processing power to run your applications,
scripts, models, and servers.

• Virtual Machines:
→ EC2 (IaaS), Azure Virtual Machine (IaaS), Compute Engine (IaaS)

• Batch computing: Run large-scale, parallel jobs
→ AWS Batch (PaaS/CaaS), Azure Batch (PaaS), Batch (PaaS/CaaS)

• Serverless functions:
→ Lambda (FaaS), Azure Functions (FaaS), Cloud Functions (FaaS)

• Container Services:
→ Fargate (CaaS), Azure Container Instance (CaaS), Cloud Run (CaaS)

c© Martial Luyts – MDA course 51

2. Storage services

Storage services let you store and retrieve files, datasets, and backups.

• Object storage: Ideal for unstructured data like images, videos
→ Simple Storage Service (S3) (IaaS/PaaS), Azure Blob Storage (IaaS/PaaS),
Google Cloud Storage (IaaS/PaaS)

• Block storage: Like a virtual hard drive, used with VMs
→ Elastic Block Store (EBS) (IaaS), Azure Disk Storage (IaaS), Persistent Disks
(IaaS)

• File storage: Shared file system
→ Elastic File System (EFS) (PaaS), Azure Files (PaaS), Filestore (PaaS)

c© Martial Luyts – MDA course 52

c© Martial Luyts – MDA course 53

3. Database services

Managed databases eliminate the need to maintain database servers

• Relational (SQL):
→ Relational Database Service (RDS) (PaaS), Azure SQL Database (PaaS),
Cloud SQL (PaaS)

• NoSQL:
→ DynamoDB (PaaS), Cosmos DB (PaaS), Firestore (PaaS), MogoDB Atlas
(SaaS/PaaS)

c© Martial Luyts – MDA course 54

c© Martial Luyts – MDA course 55

4. AI/ML services

Ready-made or customizable tools for building, training, and deploying ML
models

•ML platforms:
→ SageMaker (PaaS), Azure Machine Learning (PaaS), Vertex AI (PaaS),
Inference Endpoints (Provider is Hugging Face; PaaS/SaaS)

• AutoML: Train models without writing code
→ SageMaker Autopilot (PaaS), Azure AutoML (PaaS), AutoML (PaaS)

• AI API’s: Pre-trained models for computer vision, NLP, etc.
→ Comprehend (SaaS/PaaS), Cognitive Services (SaaS), Cloud Vision, NLP
API (SaaS), Claude (Provider Anthropic; SaaS)

c© Martial Luyts – MDA course 56

5. Analytics/Big Data services

Services that analyze large datasets quickly and efficiently

• Data Warehouses: Columnar SQL
→ Redshift (PaaS), Synapse Analytics (PaaS), BigQuery (PaaS)

• ETL tools: Moving and transforming data
→ Glue (PaaS), Dat Factory (PaaS), Cloud Data Fusion (PaaS)

• BI tools: Dashboarding and visual analytics.
→ QuickSight (SaaS), Power BI (SaaS), Looker (SaaS)

c© Martial Luyts – MDA course 57

6. DevOps/CI-CD

Tools to automate deployment, testing, and versioning

• CI/CD Pipelines: Tools that automate the process of building, testing, and
deploying code
→ CodePipeline (PaaS), Azure Pipelines (PaaS), Cloud Build (PaaS)

• Container registries: Services for storing and managing Docker container
images
→ Elastic Container Registry (ECR) (PaaS), Azure Container Registry (ACR)
(PaaS), Artifact Registry (PaaS), Docker Hub (Provider Docker; SaaS)

c© Martial Luyts – MDA course 58

7. Networking and security

Ensure connectivity, access control, and protection of resources

• Virtual Private Clouds (VPCs): Isolated networks in the cloud to organize
and secure resources
→ Amazon VPC (IaaS), Azure Virtual Network (VNET) (IaaS), Virtual Private
Cloud (VPC) (IaaS)

• IAM (Identity and Access Management): Define who can access what,
and under what conditions
→ AWS IAM (IaaS/PaaS), Azure Active Directory (AAD) (SaaS/PaaS), IAM
(Cloud Identity) (IaaS/PaaS)

• Encryption and Compliance: Services to encrypt data at rest and in transit.
→ AWS Key Management Service (KMS) (PaaS), Azure Key Vault (PaaS),
Cloud Key Management Service (KMS) (PaaS)

c© Martial Luyts – MDA course 59

Part 3:

Amazon Web Services

c© Martial Luyts – MDA course 60

3.1 Amazon Web Services Free Tier

• AWS Free Tier is Amazon’s Web Service’s introductory offering that lets you
use many of its cloud services for free, within specified usage limits.

• It is specifically designed to help you explore and learn AWS without incurring
charges.

• Question: What types of free offers are available in AWS Free Tier?

c© Martial Luyts – MDA course 61

• Answer:

• Always free: Available to all AWS users indefinitely, not just new accounts

Examples:

• AWS Lambda: 1 million requests/month (see Section 4.6)

• Amazon DynamoDB: 5 GB Storage

c© Martial Luyts – MDA course 62

• 12-month Free Tier: For new AWS accounts, valid for the first 12 months
after signup

Examples:

• Amazon S3: 5 GB of standard storage

• Amazon EC2: 750 hours/month of t2.micro or t3.micro instance

• Amazon RDS: 750 hours/month of db.t2.micro (MySQL, PostgreSQL,
etc.)

c© Martial Luyts – MDA course 63

• Short-term trials: Some services offer free trials for a limited period once
activated

Examples:

• Free trials for some AI services

• More details can be found here: https://aws.amazon.com/free/

• The free tier is an excellent way to get familiar with AWS.

c© Martial Luyts – MDA course 64

• Important notes:

• To avoid of being charged, you must stay within usage limits

• Question: How can you track this?

• Solution: Use the AWS Billing Dashboard and set up billing alerts (see
Section 3.4)

• The billing alert is a notification that AWS sends (via mail or SMS)
when your usage costs exceed a specified amount

• You must enable billing alerts manually (they are not on by default)

• It does not stop or suspend your usage, it only warns you!

• Free tier resets monthly.

c© Martial Luyts – MDA course 65

3.2 Create an AWS account

To use Amazon Free Tier, we first need to create an AWS account.

Steps:

• Go to aws.amazon.com and create a new account

→ Direct link: https://signin.aws.amazon.com/signup?request type=register

c© Martial Luyts – MDA course 66

• After setting up your account, you get access to the console:

c© Martial Luyts – MDA course 67

3.3 Security setup (IAM)

1. Secure your root account with MFA

After signing in to the AWS console for the first time, your first priority is to secure
your root account with MFA (Multi-Factor Authentication).

Question: Why is this needed?

Answer: Your creditcard is linked to your AWS root account. So, secure it!

c© Martial Luyts – MDA course 68

Steps:

• In the AWS Console, go to the IAM (Identity and Access Management)
service.

• IAM service = An authentication and authorization service that enables
you to:

• Decide who or what can access the AWS services in your account
(authentication)

• What these entities are permitted to do in your account (authorization)

c© Martial Luyts – MDA course 69

• You will see a 5-step wizard with step 2 being ’Activate MFA on your root
account’:

c© Martial Luyts – MDA course 70

• Expand step 2 and click Manage MFA

• Select virtual MFA device

• You will get a popup message about downloading a compatible MFA app for
your smartphone, e.g., Google Authenticator

• Link your MFA app to your AWS root account by entering
two consecutive codes:

• Refresh your browser and you will get a checkmark at step number 2

c© Martial Luyts – MDA course 71

2. Create a user-friendly IAM sign-in link

In the top of the IAM screen, you will notice a sign-in link starting with a number.
This is your AWS account number. You can create a user-friendly sign-in link by
clicking Customize. This will create a new DNS namespace so it has to be a
unique name:

Remark: The sign-in link is a special URL that your IAM users can browse to
access your account.

c© Martial Luyts – MDA course 72

3. Create a new IAM user

As a security best practice, you should limit the use of your AWS root account.

In step 3 of the 5 step security wizard, you can create additional user accounts
(IAM users) to perform daily tasks.

Steps:

• Expand step 3, click ’Manage users’ and select ’Add user’.

• You can choose to allow ’Programatic access’ and/or access via the ’AWS
Management Console’.

c© Martial Luyts – MDA course 73

c© Martial Luyts – MDA course 74

4. Create a group and assign permissions

The next step is to assign permissions. This is done by placing the new IAM user
in a group.

Steps:

• Create a group called ’aws-admins’

• To set full access admin permissions for this group, assign the ’Administrator
Access’ policy. You can expand each policy and, either view a plain English
summary or look directly at the JSON code

c© Martial Luyts – MDA course 75

c© Martial Luyts – MDA course 76

• Assign the policy to the group and proceed.

• You can review a summary and click on create user.

Suggestion: Download the CSV file with the security information and store it
somewhere in a safe place.

c© Martial Luyts – MDA course 77

• For here onwards, different things can be done:

• Use the ’Access key ID’ together with the ’Secret access key’ to
programmatically access your AWS account.

• Use the username and password combination to login to the AWS
Management console

• Choose to email instructions to a specified email address of the newly created
user

• This ticks off steps 3 and 4 of the security wizard!

c© Martial Luyts – MDA course 78

5. Create a password policy

A last step in the security setup (step 5) is to create a password policy.

Step: Click Manage password policy and specify a policy that meets your
requirements:

c© Martial Luyts – MDA course 79

3.4 Setting up billing alarms

A next step is to set up your billing alerts.

You can monitor your estimated AWS charges by using Amazon CloudWatch.
When you enable the monitoring of estimated charges for your AWS account, the
estimated charges are calculated and sent several times daily to CloudWatch as
metric data.

c© Martial Luyts – MDA course 80

1. Enable billing alerts

• Access the Billing and Cost Management console at:

https://console.aws.amazon.com/costmanagement

• In the navigation pane, choose Billing Preferences.

• By Alert preferences choose Edit.

• Choose Receive CloudWatch Billing Alerts.

• Choose Save preferences.

c© Martial Luyts – MDA course 81

2. Create a billing alarm using the CloudWatch console

Important: Before you create a billing alarm, you must set your Region to US
East (N. Virginia). Billing metric data is stored in this Region and represents
worldwide charges.

• Access the CloudWatch console at:

https://console.aws.amazon.com/cloudwatch

• In the navigation pane, choose Alarms, and then choose All alarms.

• Choose Create alarm.

• Choose Select metric. In AWS Namespaces, choose Billing, and then
choose Total Estimated Charge.

c© Martial Luyts – MDA course 82

• Select the box for the EstimatedCharges metric, and then choose Select
metric.

• For Statistic, choose Maximum.

• For Period, choose 6 hours.

• For Threshold type, choose Static.

• For Whenever EstimatedCharges is ..., choose Greater.

• For than ..., define the value that you want to cause your alarm to trigger. For
example, 1 USD.

c© Martial Luyts – MDA course 83

• Choose Additional Configuration and do the following:

• For Datapoints to alarm, specify 1 out of 1.

• For Missing data treatment, choose Treat missing data as missing.

• Choose Next.

• Under Notification, ensure that In alarm is selected. Then specify an Amazon
SNS topic to be notified when your alarm is in the ALARM state. The Amazon
SNS topic can include your email address so that you receive email when the
billing amount crosses the threshold that you specified.You can select an existing
Amazon SNS topic, create a new Amazon SNS topic, or use a topic ARN to
notify other account. If you want your alarm to send multiple notifications for
the same alarm state or for different alarm states, choose Add notification.

c© Martial Luyts – MDA course 84

• Choose Next.

• Under Name and description, enter a name for your alarm. The name must
contain only UTF-8 characters, and can’t contain ASCII control characters.

• Choose Next.

• Under Preview and create, make sure that your configuration is correct, and
then choose Create alarm.

c© Martial Luyts – MDA course 85

3. Deleting a billing alarm

• Access the CloudWatch console at:

https://console.aws.amazon.com/cloudwatch

• If necessary, change the Region to US East (N. Virginia). Billing metric
data is stored in this Region and reflects worldwide charges.

• In the navigation pane, choose Alarms, All alarms.

• Select the check box next to the alarm and choose Actions, Delete.

• When prompted for confirmation, choose Yes, Delete.

c© Martial Luyts – MDA course 86

3.5 Accessibility of AWS Free Tier

Until now, by setting up your AWS account and settings, the management
console of AWS was used, accessible via the web browser.

In practice, after setting up your account, there exist different ways to access the
AWS services:

•Management console (most easy and used one)

• Command-line interface (CLI)

• Software Development Kit (SDK) (for programmers)

In what follows, we will explain them in detail.

c© Martial Luyts – MDA course 87

1. Management console

• The AWS Management console is the web-based graphical user
interface (GUI) for managing AWS services.

• Best for beginners and manual setup.

• Examples:

• Uploading files to S3 via drag-and-drop
→ www.youtube.com/watch?v=GzgAS5FnHH4

• Clicking through SageMaker to start a Jupyter notebook
→ www.youtube.com/watch?v=J5I7P593beg

• Creating a Lambda function via wizard
→ www.youtube.com/watch?v=5hF2M6GLxFQ

c© Martial Luyts – MDA course 88

2. Command-line interface (CLI)

• The AWS CLI is a text-based tool for managing AWS services via
terminal/command prompt.

• You type commands like aws s3 cp or aws ec2 run-instances

• Fast for batch tasks

• Example:

aws s3 cp myfile.csv s3://my-bucket/

→ www.youtube.com/watch?v=FLIp6BLtwjk

c© Martial Luyts – MDA course 89

• To use the AWS CLI, you first need to install it on your local machine, and
depends in your operating system.

•Windows:

msiexec.exe /i https://awscli.amazonaws.com/AWSCLIV2.msi

•Mac:

curl "https://awscli.amazonaws.com/AWSCLIV2.pkg" -o

"AWSCLIV2.pkg"

sudo installer -pkg AWSCLIV2.pkg -target /

c© Martial Luyts – MDA course 90

• Once installed, configure the AWS CLI with your AWS credentials, allowing
you to access your AWS resources and services.

aws configure

AWS Access Key ID [None]: SKDELSOEJALZEK2

AWS Secret Access Key [None]: wJqlrXUtndlncjJZdkjn

Default region name [None]: us-west-2

Default output format [None]: json

c© Martial Luyts – MDA course 91

• To create a S3 Bucket with CLI:

aws s3api create-bucket \

--bucket mdaclassdemo \

--region eu-central-1 \

--create-bucket-configuration

LocationConstraint=eu-central-1

• Remark: A S3 Bucket is a storage container in Amazon S3, where
you can store files, data, or entire datasets in the cloud (objects), similar to
a folder or drive on your computer.

c© Martial Luyts – MDA course 92

3. Software Development Kits (SDKs)

• SDKs are programming language libraries for interacting with AWS
services directly in your code (Python, R, Java, etc.).

• Best for automation with applications and custom workflows in data science

• Popular among data scientists, since it is fully programmable and integratable
into code

• Boto3 allows you to write Python code that interacts with AWS services

c© Martial Luyts – MDA course 93

• Prior to this, setup is needed (IAM roles, AWS credentials configured)

• Example (boto3 in Python):

import boto3

s3 = boto3.client(’s3’,

AWS ACCESS KEY ID = ’YOUR ACCESS KEY ID’,

AWS SECRET ACCESS KEY = ’YOUR SECRET ACCESS KEY’,

REGION NAME=’eu-central-1’,

)

c© Martial Luyts – MDA course 94

s3.creat bucket(

Bucket=my-bucket,

CreateBucketConfiguration={’LocationConstraint’ :

’eu-central-1’}

)

s3.upload file(’train.csv, ’my-bucket’, ’train.csv’

→ www.youtube.com/watch?v=QSDIKakB8qs

c© Martial Luyts – MDA course 95

Remarks:

• Never hard-code your credentials in Python scripts that are shared or
production code.

Instead, consider the use of environment variables, e.g.,

Terminal:

export AWS ACCESS KEY ID = ’YOUR ACCESS KEY ID’

export AWS SECRET ACCESS KEY = ’YOUR SECRET ACCESS KEY’

AWS DEFAULT REGION = ’eu-central-1’

Python:

import boto3

s3 = boto3.client(’s3’)

c© Martial Luyts – MDA course 96

• By default, S3 buckets and its objects are NOT publicly available.

Question: How to grant access and make it publicly available?

Answer:

• If block public access is activated for all buckets within the account, the
message ”Bucket and objects not public” is shown in the management
console.

c© Martial Luyts – MDA course 97

• By clicking on ’Edit’, you can edit the bucket and objects settings

c© Martial Luyts – MDA course 98

c© Martial Luyts – MDA course 99

• After AWS configuration and boto3 installation (pip install boto3),
S3 objects can directly be accessed via Pandas:

Route 1:

import pandas as pd

pd.read csv(’https://mdaprojectdata.s3.eu-central-1.

amazonaws.com/example.csv’)

Route 2:

pd.read csv(’s3://mdaprojectdata/example.csv’)

c© Martial Luyts – MDA course 100

Part 4:

End-to-end data science project with AWS

c© Martial Luyts – MDA course 101

4.1 Objective of the project

Use Python and scikit-learn to train a logistic model predicting Titanic survivors,
using AWS Free Tier services to handle

• storage → S3,

• compute → SageMaker Studio or EC2,

• deployment → Lambda + API Gateway.

We will examine how to perform these steps with management console, CLI and
SDKs!

c© Martial Luyts – MDA course 102

4.2 Create an S3 bucket

1. Management console:

• Go to the S3 service

• Click ”Create bucket”.

• Bucket name: titanic-data-console

• Region: us-east-1

• Click ”Create bucket” at the bottom.

c© Martial Luyts – MDA course 103

2. CLI:

aws s3api creat-bucket \

--bucket titanic-data-cli \

--region eu-east-1 \

--create-bucket-configuration LocationConstraint=us-east-1

c© Martial Luyts – MDA course 104

3. SDKs:

import boto3

s3 = boto3.client(’s3’, region name=’us-east-1’)

bucket name = ’titanic-data-bucket-sdk’

s3.create bucket(

Bucket=bucket name,

CreateBucketConfiguration={’LocationConstraint’:’us-east-1’}

)

c© Martial Luyts – MDA course 105

4.3 Upload the Titanic Dataset

1. Management console:

• Go into your new bucket: titanic-data-console.

• Click ”Upload” → Add files:

• Upload train.csv and test.csv from Kaggle
(kaggle.com/competitions/titanic/data)

• Leave permissions as default → Click ”Upload”.

c© Martial Luyts – MDA course 106

2. CLI:

aws s3 cp train.csv s3://titanic-data-cli/train.csv

3. SDKs:

s3.upload file(’train.csv’, bucket name, ’train.csv’)

c© Martial Luyts – MDA course 107

4.4 Set up SageMaker notebook
(JupyterLab)

1. Management console:

• Go to the SageMaker service.

• Select SageMaker Studio (if this is the first time, you will need to create a
user and domain).

• Accept defaults or create a new IAM role.

• Launch Studio (JupyterLab interface opens in-browser).

• Inside JupyterLab:

• Click ”File” → ”New” → ”Notebook (Python 3)”.

c© Martial Luyts – MDA course 108

2. CLI:

While the CLI is limited compared to the Console for managing SageMaker Studio,
you can create a Notebook Instance:

• Create an IAM role with SageMaker permissions

• Create a notebook instance:

aws sagemaker create-notebook-instance \

--notebook-instance-name TitanicNotebookCLI \

--instance-type ml.t2.medium \

--role-arn

arn:aws:iam::123456789012:role/SageMakerExecutionRole

--region us-east-1

c© Martial Luyts – MDA course 109

• Starting the notebook instance:

aws sagemaker start-notebook-instance \

--notebook-instance-name TitanicNotebookCLI

• Then open the Jupyter environment from the AWS Console →
SageMaker → Notebook Instances.

c© Martial Luyts – MDA course 110

3. SDKs:

Creating a full SageMaker Studio instance is more complex via SDK (and usually
done via Console), but we can automate traditional notebook instances:

sagemaker = boto3.client(’sagemaker’)

sagemaker.create notebook instance(

NotebookInstanceName=’TitanicNotebookSDK’,

InstanceType=’ml.t2.medium’,

RoleArn=’your-iam-role-arn’,

SubnetId=’your-subnet-id’,

SecurityGroupIds=[’your-security-group-id’]

)

c© Martial Luyts – MDA course 111

4.4 Train model in Notebook

1. Management console:

In the new notebook, run:

import pandas as pd

df = pd.read csv(’s3://titanic-data-console/train.csv’)

df[’Age’].fillna(df[’Age’].mean(), inplace=True)

df = pd.get dummies(df.drop(columns=[’Name’, ’Cabin’, ’Ticket’,

’PassengerId’]), drop first=True)

c© Martial Luyts – MDA course 112

from sklearn.linear model import LogisticRegression

from sklearn.model selection import train test split

from sklearn.metrics import accuracy score

X = df.drop(’Survived’, axis=1)

y = df[’Survived’]

X train, X test, y train, y test = train test split(X, y)

c© Martial Luyts – MDA course 113

model = LogisticRegression(max iter=500)

model.fit(X train, y train)

print("Accuracy:", accuracy score(y test, model.predict(X test)))

2. CLI & 3. SDKs:

Use the same python script inside the Jupyter notebook you just launched in both
cases.

c© Martial Luyts – MDA course 114

4.5 Save and upload the model

1. Management console:

• In a new notebook cell:

import joblib

joblib.dump(model, ’model.pkl’)

Remark: joblib is a Python library used to serialize (save, e.g.,
model.pkl) and deserialize (load) Python objects (here, our training ML
model)

• Serialization: Converting a Python object (like a model) into a binary
format that can be saved and uploaded to the cloud

• Deserialization: Reading that binary file and reconstructing the original
model object in memory.

c© Martial Luyts – MDA course 115

• Then in the JupyterLab file browser:

• Right-click model.pkl → Download (or note location).

• Go back to S3 → Bucket: titanic-data-console

• Click ”Upload” → Add model.pkl.

c© Martial Luyts – MDA course 116

2. CLI:

After saving model.pkl in your notebook:

aws s3 cp model.pkl s3://titanic-data-cli/model.pkl

3. SDKs:

import joblib

joblib.dump(model, ’model.pkl’)

s3.upload file(’model.pkl’, bucket name, ’model.pkl’)

c© Martial Luyts – MDA course 117

4.6 Deploy your model

The next task is to

• Create a [1] Lambda function that loads the model from S3

• Trigger it via HTTP request using [2] API Gateway

• Input: JSON format (data points); Output: Prediction (survived:yes/no)

But before reporting all (coding) steps, an explanation will be given about the
principles and usage of [1] AWS Lambda and [2] API Gateway!

c© Martial Luyts – MDA course 118

[1] AWS Lambda:

• Introduced in 2014 by Amazon, and extended its functionalities over time

• AWS Lambda lets you run code (e.g., Python, Java, Node.js) without
provisioning servers. You upload your function code, and AWS runs it in
response to events.

• At its core, Lambda functions consists of two parts:

• The function to call

• Additional layers that can be used to add other functionalities, s.a.
additional Python packages

c© Martial Luyts – MDA course 119

• There are three cost drivers for Lambda functions:

• Number of executions per month

• Memory allocated for a function

• Execution time in miliseconds

→ https://s3.amazonaws.com/lambda-tools/pricing-calculator.html

• Reminder: AWS Free tier offers 1 million requests/month for free, and 400000
GB-seconds of compute time per month!

• GB-seconds = number of seconds your function runs for, multiplied by the
amount of RAM memory consumed.

c© Martial Luyts – MDA course 120

• The file uploaded in AWS needs to have a ”handler” function

• It is the entry point AWS Lambda uses to execute your code.

• When you configure a Lambda function, you specify the handler name, typically
in the format:

filename.function name

Example in CLI:

--handler lambda file.lambda handler

• lambda file.py is the file that contains your code

• lambda handler is the function within that file to be called when the
Lambda is triggered

c© Martial Luyts – MDA course 121

• AWS looks inside that file and executes the specified function when the event
occurs

• This function takes two arguments:

def lambda handler(event, context):

...

• event: contains the input data (e.g., JSON body of an HTTP request)

• context: contains metadata about the invocation, function name, timeout,
etc.

• The handler must return a response that AWS Lambda understands.

c© Martial Luyts – MDA course 122

1. Management console:

• Go to the AWS Lambda → Click Create Function

• Choos ”Author from scratch”

• Name: predictionTitanic

• Runtime: Python 3.x

• Permissions: Create a new role with basic Lambda permissions

• Click Create Function

c© Martial Luyts – MDA course 123

• In the inline editor, upload or past your handler code:

import json

import boto3

import joblib

import pandas as pd

import s3fs

s3=boto3.client(’s3’)

bucket=’titanic-data-bucket’

key=’model.pkl’

model file=’/tmp/model.pkl’

s3.download file(bucket, key, model file)

model=joblib.load(model file)

c© Martial Luyts – MDA course 124

def lambda handler(event,context):

input data=pd.DataFrame([event[’features’]])

prediction=model.predict(input data)[0]

return {

’statusCode’:200,

’body’:json.dumps({’prediction’:int(prediction)})

}

• Click Deploy

c© Martial Luyts – MDA course 125

2. CLI:

• Package your Lambda code in a ZIP file:

zip function.zip lambda file.py

• Create the Lambda function:

aws lambda create-function \

--function-name predictTitanic \

--runtime python3.9 \

--handler lambda file.lambda handler \

--role arn:aws:iam::ACCOUNT ID:role/LambdaExecutionRole \

--zip-file fileb://function.zip

c© Martial Luyts – MDA course 126

3. SDKs:

import boto3

client=boto3.client(’lambda’)

with open(’function.zip’, ’rb’) as f:

zipped code=f.read()

c© Martial Luyts – MDA course 127

client.create function(

FunctionName=’PredictTitanic’,

RunTime=’python3.9’,

Role=’arn:aws:iam::ACCOUNT ID:role/LambdaExecturionRole’,

Code=dict(ZipFile=zipped code),

Timeout=300

)

c© Martial Luyts – MDA course 128

Remark: Lambda requires permission to read from S3. Therefore, attach the
following policy:

{

"Effect":"Allow",

"Action":["s3:GetObject"],

"Resource":"arn:aws:s3:::titanic-data-bucket",

}

c© Martial Luyts – MDA course 129

[2] API Getaway:

• API Getaway is like a ”front door” for your model. It lets anyone (a browser,
Postman or your app) call your deployed model using a simple HTTP request.

• In our Titanic project, for example, we are building a ML model that predicts if
someone would survive the Titanic.

• You want users to (1) send passenger data and (2) get back a prediction.

c© Martial Luyts – MDA course 130

• We don’t want users to interact directly with Lambda or S3, but instead, just
want an API like:

POST https://api.com/predict

...

and receives the result

• Question: How does it work?

c© Martial Luyts – MDA course 131

• Answer: Let’s say you want to send in your data in JSON format:

{

"features":[22, 1, 7.25, 1, 0, 0, 1, 0, 0]

}

API Getaway does this:

• Receives the HTTP POST request on /predict

• Forward the request to your Lambda function

• Lambda runs the model on the data and returns:

{ "prediction": 0 }

• API Gateway sends the response back to the user.

c© Martial Luyts – MDA course 132

Advantages:

• User-friendly interface for your model

• Security: You can require API keys or tokens

• Scalability: It can handle thousands of requests

•Monitoring: View metric like request count or latency

c© Martial Luyts – MDA course 133

1. Management console:

• Go to the API Getaway → Create REST API

• Choose ”REST API” for detailed setup

• Name: titanicAPI

• Create a resource /predict and a POST method

• Link it to the Lambda function

• Deploy the API to a new stage (e.g., prod)

c© Martial Luyts – MDA course 134

• After deployment, API Getaway generates a public endpoint that looks like
this:

curl -X POST

https://<api-id>.execute-api.<region>.amazonaws.com/<stage>

/<resource> \

Our example:

curl -X POST

https://abc123xyz.execute-api.us-east-1.amazonaws.com/prod

/predict \

c© Martial Luyts – MDA course 135

• Testing can now be done in your Terminal:

curl -X POST https://abc123xyz.execute-api.us-east-1.

amazonaws.com/prod/predict \

-H "Content-Type: application/json" \

-d ’{ "features":[22, 1, 7.25, 1, 0, 0, 1, 0, 0] }’

c© Martial Luyts – MDA course 136

2. CLI:

• Create REST API:

aws apigateway create-rest-api --name ’TitanicAPI’

• After retrieving the restApiId, get the root resource ID:

aws apigateway get-resources --rest-api-id $restApiId

• Create /predict resource:

aws apigateway create-resource \

--rest-api-id $restApiId \

--parent-id $rootResourceId \

--path-part predict

c© Martial Luyts – MDA course 137

• Store the resource ID of /predict:

predictResourceId=xyz

• Create POST method:

aws apigateway put-method \

--rest-api-id $restApiId \

--resource-id $predictResourceId \

--http-method POST \

--authorization-type "NONE"

c© Martial Luyts – MDA course 138

• Integrate with Lambda:

aws apigateway put-integration \

--rest-api-id $restApiId \

--resource-id $predictResourceId \

--http-method POST \

--type AWS PROXY \

--integration-http-method POST \

--uri arn:aws:apigateway:us-east-1:lambda:path/

2015-03-31/functions/arn:aws:lambda:us-east-1:ACCOUNT ID:

function:predictTitanic/invocations

c© Martial Luyts – MDA course 139

• Deploy the API:

aws apigateway create-deployment \

--rest-api-id $restApiId \

--stage-name prod

3. SDKs:

• Create REST API:

apigw = boto3.client(’apigateway’)

api = apigw.create rest api(name=’TitanicAPI’)

rest api id = api[’id’]

c© Martial Luyts – MDA course 140

• Get the Root Resource ID:

resources = apigw.get resources(restApiId=rest api id)

root id = resources[’items’][0][’id’]

• Create /predict Resource:

predict resource = apigw.create resource(

restApiId=rest api id,

parentId=root id,

pathPart=’predict’

)

predict id = predict resource[’id’]

c© Martial Luyts – MDA course 141

• Define POST Method:

apigw.put method(

restApiId=rest api id,

resourceId=predict id,

httpMethod=’POST’,

authorizationType=’NONE’

)

• Integrate Lambda with API Gateway:

lambda arn =

’arn:aws:lambda:<region>:<account-id>:function:predictTitanic’

c© Martial Luyts – MDA course 142

uri = f’arn:aws:apigateway:<region>:lambda:path/

2015-03-31/functions/{lambda arn}/invocations’

apigw.put integration(

restApiId=rest api id,

resourceId=predict id,

httpMethod=’POST’,

type=’AWS PROXY’,

integrationHttpMethod=’POST’,

uri=uri

)

c© Martial Luyts – MDA course 143

• Deploy the API:

deployment = apigw.create deployment(

restApiId=rest api id,

resourceId=predict id,

stageName=’prod’

)

c© Martial Luyts – MDA course 144

	0. Introduction & outline of this class
	 0.1. Introduction
	 0.2. Outline of the class
	1. Cloud computing overview
	 1.1. What is Cloud Computing?
	 1.2. Benefits of Cloud computing for Data Science
	 1.3. Use Cases in Data Science?
	2. Cloud Service Providers, Platforms & Services
	 2.1. Cloud Service Providers
	 2.2. Cloud Service models
	 2.3. Cloud Services
	3. Amazon Web Services
	 3.1. Amazon Web Services Free Tier
	 3.2. Create an AWS account
	 3.3. Security setup (IAM)
	 3.4. Setting up billing alarms
	 3.5. Accessibility of AWS Free Tier
	4. End-to-end data science project with AWS
	 4.1. Objective of the project
	 4.2. Create an S3 bucket
	 4.3. Upload the Titanic Dataset
	 4.4. Set Up SageMaker Notebook (JupyterLab)
	 4.4. Train model in Notebook
	 4.5. Save and upload the model
	 4.6. Deploy model

